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ANALYTIC SOLUTIONS OF PARABOLIC AND
HYPERBOLIC HEAT-TRANSFER EQUATIONS
FOR NONLINEAR MEDIA

O. N. Shablovskii UDC 536.2.01

New classes of analytic solutions are obtained which describe unsteady temperature distribu-
tions and take account of the temperature dependence of the thermophysical properties of the
material. The concept of a solution of the boundary layer transition type is introduced for the
generalized heat-transfer equation.

We consider the nonlinear heat-conduction equation in a one-dimensional plane region
e(TY Ty = [MT) Tl A1)
We introduce a new function & = £(x, t) with the following properties:
E=U(T), &=1Ty,

T
U(T)=U, + jc(r) dT, U, == const.
0

We change from the variables (x, t) fo new independent variables (¢, t):

dt = U(T) dx -+ (WUTy) dt,
DE /D (x, 1) = U0,

so that the initial Eq. (1) takes the form
B(T)Te=[MT)Tels, p=cU=2, T=T(E, 1), (2)

where the Cartesian coordinate is related to the new variable by the equation

3)

3
dg
x (& ) =§ — nggdt, U=UITE, 9.
UE 0
0
A comparison of Egs. (1) and (2) shows that to each one~dimensional unsteady temperature distribution in a
medium with the thermophysical parameters ¢(T) and A(T) there corresponds a certain one-dimensional un-
steady temperature distribution in a medium with volumetric heat capacity (T) and a thermal conductivity
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A(T). Consequently, different temperature distributions in different media are equivalent from the point of
view of the transformation considered. Thus, it is possible to construct new classes of temperature distribu-
tions based on known exact and approximate solutions of the nonlinear heat-conduction equation. The bound-
aries of the spatial region in which the old solution was obtained are transformed by Eq. (3).
We note, e.g., that if S(T) = const

) =p(pT— |

e(T) = _ .
=5

0

We present an example of the solution of the nonlinear hyperbolic heat-transfer equation in a semiinfi-
nite region with 2 moving boundary. We take the generalized heat-transfer equation [1-3] in the form

cTy + ey - gy = (W )ar 4)

We consider a temperature interval T€(0, T'] in which the thermophysical properties of the material vary as
follows:

c(M)=cy+eT, MT)=hy+MT, c; Ay—const, i=0, 1,
YT D=2+ wn@OT, vo=const, v>0.

5
The internal heat source strength is g, = 2 q; () T%. 1In the class of solutions given below we assume that if
=2

the value ¥ = 0 is not excluded in considering heat transfer in the temperature range under study, q, #0. If
v > 0 everywhere, we can take ¢, = 0, qy = 0.

The initial and boundary conditions are:
t=0:T(x 0)=TOx), Ty(x, 0) = TW(x); 0t < 00,
x> —o0, T>0; x=1x(f), T=Ty(1), — o0 <x< % (0)-
Equation (4) is satisfied by the following exp;ressions:
Ee=38(T), Ma=8+n, Ne=g, +cyTu, n=1(x, 1),

T

S=U—U,= fc(T)dT.

b
We introduce new independent variables (£, t):

dt — Sdx + (AST5 —m) dt,

D, t)yD(x, )=S0, 0<T<T", (5)
H
(&, t):§ dE _S ATy —n
SE 0) S
0

and instead of (4) we obtain for T (¢, t) and 1 (¢, T):

6
(o + &4 (T — 0T + St = S2 (AT -+ T2, ©

d(AS
ST]g ={y +cy |:Ttt—|- 37\IST§T§t——- QT]Tgt -— T]tTg + -(L_iT—) T;;? Tt}. (7)

Equation (6) is hyperbolic for v > 0 if Sy gis replaced by (7).

We seek the solutions of (6) and (7) in the form

TE = ST.0%, 1@ 5= Tn: (OFH, L0, &) ®)
n=1

n=1

Substitution of these series into the equations gives
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E “COTWI + 2 ol st a—n(n + 2 — 2k) — Lk (k + D Tei1Anpo—p—

A=l h=1

n

— 7»10314114—15:1_4 gl 4 12 esToTnro—n — CiMasr X
i=1

n—h+4-1

X (3 Tiln—h2—i) Tumpeos) + EQL(k ) Mt Angaen —

=]

— bk (k4 1) Teq1Crasn — 7»160010114,725/1—1{} R

b

+[ (— ) k(f+ 1) ThoyBprsn— X4 —Bk‘SEn kJ grts —

k=1

I

— 1 [glk (k-4 1)TyDprss ] Enﬂ} s

n
{[COY0T11+1 + gednpi 2 BT rF e —coTh(n 42— k) Nagomp—

1 R=]

il K

n
— CoVokTpMnto—r + 0T o1 En s J gt [(Iacn+2 + ¥ (covs +
g}
+ 10c0) T T2 — % (B4 D MatiAnyon+ 3ot Fosyn —
— 2c¥H n12 — (CoVe + Vor) ThGnro—n + aiTkKrH»E—kJ gt
+ [043n+3 + 2 ViArt1 Tro—n + 3BsCrroF i —
R=1

— 2(coV1 -+ Vo) Tl nrs—n — c1V1Ar+1Gnpo—n + @zAh+1Kn+2—k] grts

-+ [q5Dn+4 + 2 3BuBrrsFnii—n— 2017 Arc1 Hups—n -+ Oﬁack+2Kn+2—kJ gt

+ [i 3BsDrpaFrpi—n -+ 0 BriaKnra s ] §n+5} -0
k=1

Ry == 7”00%'\’0, oty = CoVo (Aot -+ 2A400) 4~ Mol (€6V1 - VoCa)s

3
Oy, = —2‘7%0100?0 - (o1 F Vocs) (Aot + 2hsc0) + C41h6Co,

3 3
Oy = ? her (Covs + VoCa) - es¥1 (Molr + 2hacg), o = —2— 7»10%’\?1,

MoC
Br= oo By = oo ( ; L 7»100) + Aoy (Co1 - VoC1)s

COVO,

A
s = ( ot + 7"100) (coV1 -t YoC1) -+ Agcocrvy -

B =

AoC
: (CoVy - VoCs) + 11 ( ‘02—1 + 7‘100), s = 01‘\’1,

s
ly = hoco, Is = MoCoCt -+ e, 1, = —40- ¢+ My, Iy = %c%,

Ao = i TpTobpt, Cppo= 2 Tyl ntron.

=1

Bpyz= 2 Arp1Anpyo, Dayps = 2 TyBnyss,

n—l—E,ka(fl—{—l—k)T,H_l —n Fo “Zk(ﬂ—[—Q-—k)Tk 1A hs

k=1
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n

Goy1 = Ekaﬁn+2~h, Hupo = Z(k + 1) Tro 1Mt 2t
=

k=]

Kﬂ+] = 2 Th+1En_k.
k=1

Hence we find that the expansion coefficients in (8) must be calculated from the recurrence relations
Ty=const=£0, Thpr —n(n+1)0,Tnps -+ nTillps + Qo () =0,
8, = hocoT?, (9)

Yol i1 - (31 -+ 4) ¥60:Tnp1 — VoTiMagt — (2 + D TMags + %op1 (=0, n>1.

It is easy to see that the functions &p+4(t) and xp+,(t) depend only on the expansion coefficients with numbers
smaller than (n +1). For example,

Dy = — 7\10071‘%1 Yo = 12 T%,
Co

— @y = 47¥000T1T§ — 87»100T§T2 — %‘ T?”h,
0

coXs = 26,74 T+ an? — 2¢,Ty (M + Yo"fiz) - CiT%TIz +
+ {covs - Yot1) (TiTz - T%ha) + Tz (220, TT, + 70‘0T? ~— 4coTons):

Eliminating n,.4(t) from (9), we write the second order linear differential equation

1..
Yoo + Tat1 -+ [(2n+ 3) V81 E‘—;—!] Trp1— 0y (4 12Ty +

0
n

. n-1
+ 2y % Ot - Yngr = 0, Jor 03— const,

whose general solution has the form

t
Tt1 () = Pry1exp(ent1?) + Rop1 €Xp (Rnyif) — ( Frt1€Xp (— nt1f) dt) exp (8np1?) +
. Al — Epgy

13

. (‘S frt1 €Xp (— %nii?) dz‘) exp (%nt17),

Hn - &
SRR (10)
— 4 1
Tnt1 (f):m(%‘bnw%-nt (Dn+1+Xn+1>, Yo7 0,

1

1 n41\2, 4y T n
- xn+1={——[(2n+3)706,+ . ]i[((2n+3)voai+» : )-i——nﬂ(n-{—l)wi] }270(114—1)'

The value of €, is positive; it is calculated by using the positive value of the square root. The value
of ny4; is negative; it is calculated by using the negative value of the square root. For this reason we take

Popr = 0, n> 1,
the Ry are arbitrary integration constants.
Consequently, at time zero we have the following temperature distribution:

TTE 0) =TE+ ERn+1§”+l, Ty 0,
n=1

dg
SE 0

E—>0, x—>-—o00, T—0;

ﬂ§®=5
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the constants Rp+; are chosen so that the function T(¢, 0) will be differentiable a sufficient number of times.

Example.

T1>0, Rop1 =0, n>21; =0, S=¢T,
E{x, 0) = exp(coTx), T (x, 0)= TyexplceTax), xE(— o0, % (0)].

We assume that the boundary of the semiinfinite region is moving: xp{t) = x[{p(t), t]. The choices of
Tp(t) = T (xp, t) and x,(t) are interconnected; both these boundary functions depend on the form of the preas-
signed function £ = £(t) and the choice of the arbitrary constants R, ¢, n=1.

Relations (5), (8), and (10) give an exact formal solufion of the problem. The question of the conver-
gence of series (8) in the neighborhood of the characteristic £ = 0 still remains open.

Let us turn to the question of the boundary layer transition type of solution of the generalized heat-trans-
fer equation.

It was found recently that the term cyTy in the generalized heat-transfer equation is helpful in a method-
ological connection: Taking account of the finite rate of propagation of heat increases the stability of an in-
verse heat-conduction boundary value problem [4, 5]. Here we consider the smoothing effect of the cyTit term
for one form of discontinuous initial data.

Suppose we have the parabolic equation (1) and the hyperbolic equation
T+ eyTy = (M )a- aL

Both of these equations are second order in the argument x; we specify identical boundary conditions with res-
pect to the coordinate x for both equations. We do not make the form of the boundary conditions specific,
since it is not important for the following arguments.

We assume that the relaxation period y is short, and discuss the situation relative to the presence of
this small parameter for the old time derivative in Eq. (11). In this analysis we use the approach employed in
[6] to study the relation between the Navier—Stokes and Euler equations for a gas whose viscosity approaches
Zero.

The object of our discussion will be the initial conditions for Egs. (1) and (11). Equation (11) must have
two conditions with respect to the argument t, and Eq. (1) one initial condition. For the parabolic Eq. {1) we
specify discontinuous initial data: At t = 0 the temperature jumps from Ty(x) to Ty(x) in the spatial region under
consideration. For the hyperbolic Eq. (11) we pose an initial two-point problem with one of the conditions at
infinity:

t=20, T="Tyx); t>+00, T—T,(x).

We now assume that the relaxation period is constant: y = v = const. FollowingtheMises —~Ladford method [6]
we introduce a new argument s = t/y,, and obtain instead of Eq. (11)

cTe+ cTs = o (AT 4)x- (12)

We now replace the right-hand side of Eq. (12) by zero, and consider a solution of this equation for which T
approaches finite values as s — 0 and s —«; we assume that each limiting temperature depends on x as on a
parameter. We denote this solution by 6(s, vy), employing a single symbol for the whole family of variable
states. We call 0 (s, y) a solution of Eq. (12) of the boundary layer transition type corresponding to the time
t = 0 and the temperatures T, and Ty. This term reflects the structure of the solution and the method of ob-
taining it.

The integration of Eq. (12) with a zero right-hand side gives

T=T(+(Tog—T)exp(—s),
s—>0, T—>Ty §> -+ o0, T—>Ty,
t T,—T,

— =1n
Yo T—T,
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We study the transition from T, to Ty. Let 6 be any real number such that 0 < 6 <0.5; we take two interme-
diate values of the temperature T' and T" such that

To—T =8(Ty—T)=T"—Ty, [T, TV<=1Ty T4,
then
Ty—T" = (1—8)(To—Ty), T' —T" = (1 —28)(Ty— Ty
Employing these relations we calculate the difference of the corresponding values of the arguments:

" ’ 1

We conclude from this result that the time interval during which the main part of the change from T, to T}
occurs approaches zeroas y,— 0. We note that the right-hand side of the last equation does not depend on the
temperature difference T, ~ Ty.

Let us assume that a certain heat-transfer problem has been solved with the hyperbolic Eq. (11) in the

(%, t) plane for all small y, #0. We denote this family of solutions by 7 (x, t; ¥;). We make the substitution

=t/7, in these solutions and denote this same family by 7(x, s; v;). We assume now that this same bound-

ary value problem is solved by the parabolic Eq. (1); the solution obtained 7((x, t) characterizes the temper-
ature distribution everywhere except at t = 0, where unbounded values of Tt may occur.

On the basis of the Mises— Ladford construction it is natural to assume that for sufficiently small v,
the solution 7 of the generalized heat-transfer equation will be close to 7, everywhere except in the neighbor-
hood of t = 0, where the temperature experiences a jump. During the jump, 7(,t; v,) has derivatives which
increase without bound as v, — 0, but it seems plausible that the derivatives 8/8s = v,8/8t of the solution T (x,
s3 vq) are bounded. Then the right-hand side of Eq. (12) is of the order vy, so that Tturns out to be close to
the boundary layer transition type of solution 6 (s, ¥y} of Eq. (12) in this interval.

Let us analyze these results. Let the time interval A(y,) approach zero more slowly than v, i.e.,
vo/ Alyg) — 0. Then by choosing a sufficiently small value of v, it is possible to satisfy the following require-
ments with a preassigned accuracy:

1) at times t > Af(y, the solution 7(x,t;v,) is approximately equal to the solution 7((x, t);

2) at times t < A(y,) the solution T (x, 8; v, is approximately equal to 6 (s, v,) —the solution of the
boundary layer transition type corresponding tot = 0 and the temperatures T, and Tj.

There has not been a rigorous mathematical investigation of the general case of the transition from the
hyperbolic to the parabolic heat-transfer equation as y—0. Certain questions of the degeneration of the
hyperbolic equation with a small parameter into the parabolic equation for rapidly oscillating boundary condi-
tions were studied in [7].

NOTATION

T, temperature; x, Cartesian coordinate; t, time; ¢, volumetric heat capacity; A, thermal conductivity
of medium; vy, heat-transfer (heat flux) relaxation period; gy, internal heat source strength; £, new argument;
n, auxiliary function. Subscripts: an independent variable as a subscript denotes partial differentiation; a dot
over a quantity denotes ordinary differentiation.
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