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ANALYTIC SOLUTIONS OF PARABOLIC AND 

HYPERBOLIC HEAT-TRANSFER EQUATIONS 

FOR NONLINEAR MEDIA 

O. N. S h a b l o v s k i i  UDC 536.2.01 

New classes of analytic solutions are obtained which describe unsteady temperature distribu- 
tions and take account of the temperature dependence of the thermophysical properties of the 
material. The concept of a solution of the boundary layer transition type is introduced for the 
generalized heat-transfer equation. 

We consider the nonlinear heat-conduction equation in a one-dimensional plane region 

c(T)  T, = [~,(T) T~]~. (1) 

We introduce a new function ~ = ~(x, t) with the following properties: 

~ = u (T), 5 = 7,T:r 

T 

U (T) = Uo + 2 c(T)  dT, Uo~const. 
0 

We change f rom the variables (x, t) to new independent variables  (~, t): 

d~ = U (T) dx + (;~UT 0 dr, 

D (~, t)/O (x, t) = U =/: O, 

so that the initial Eq. (1) takes the form 

(T) Tt [)~ (V) Tt]~, ~ = cU -~, T = T (~, t), 

where the Car tes ian  coordinate is related to the new variable by the equation 

t 

x ( L t ) =  u ( ~ , o )  . 

0 

(2) 

(3) 

A compar ison  of Eqs. (1) and (2) shows that to each one-dimensional  unsteady tempera ture  distr ibution in a 
medium with the thermophysical  pa ramete r s  c(T) and X(T) there  corresponds  a cer ta in  one-dimensional  un- 
steady tempera ture  distr ibution in a medium with volumetric  heat capaci ty  fi (T) and a thermal  conductivity 
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MT). Consequent ly ,  d i f fe ren t  t e m p e r a t u r e  d i s t r ibu t ions  in d i f fe ren t  media  a r e  equivalent  f r o m  the point  of 
view of the t r a n s f o r m a t i o n  cons ide red .  Thus ,  it is poss ib le  to c o n s t r u c t  new c l a s s e s  of t e m p e r a t u r e  d i s t r i b u -  
t ions based  on known exac t  and app rox ima te  solut ions of the non l inea r  hea t - conduc t i on  equat ion.  The bound-  
a r i e s  of the spat ia l  r eg ion  in which the old solut ion was obtained a r e  t r a n s f o r m e d  by  Eq. (3). 

We note,  e . g . ,  that  if fi (T) = cons t  

We p re sen t  an example  of  the solut ion of the non l inea r  hype rbo l i c  h e a t - t r a n s f e r  equat ion in a s e m i i n f i -  
n i t e , reg ion  with a moving boundary .  We take the gene ra l i zed  h e a t - t r a n s f e r  equat ion [1-3] in the  f o r m  

cT~ + cvTn + qv = (2Tx)x. (4) 

We cons ide r  a t e m p e r a t u r e  in te rva l  Te  (0, T']  in which the t h e r m o p h y s i c a l  p r o p e r t i e s  of the m a t e r i a l  v a r y  as  
follows: 

c(T)  = Co + ctT, L (T) = ~o + s ci, ~ , - -  const, i = O, 1, 

(T, t ) = y o + ? ~ ( t ) T ,  Yo~-const, 7 ~ 0 .  

5 

The in terna l  hea t  s o u r c e  s t r eng th  is qv = ~ q~(t)T~; In the c l a s s  of solut ions  given below we a s s u m e  that  if 
i = 2  

the value 7 = 0 is not excluded in c ons i de r i ng  hea t  t r a n s f e r  in the t e m p e r a t u r e  range  under  s tudy,  q2 * O. If 
7 > 0 e v e r y w h e r e ,  we can take  q2 = O, qv = O. 

The init ial  and boundary  condi t ions  a re :  

t -= 0 : T(x ,  O) = T(~ Tt(x,  0) = T(b(x); 0 ~ t  < 0% 

x---~-- cr T---~0; x =  xb(t), T =  Tb(t), - o o . < x ~ x b ( t ) .  

Equat ion (4) is sa t i s f ied  by the fol lowing e x p r e s s i o n s :  

~x = S (T), ~Tx = ~t + % ~lx = qv + c'fT, t, ~q = ~l (x, t), 
v 

S --- U - -  Uo = .[ c (T) dT. 
0 

We in t roduce  new independent  va r i ab le s  (~, t): 

d~ = Sdx + (s - -  ~1) dt, 

D(~, t)/D(x, t )=S=/=O, O < T ~ T ' ,  

s (~, o) s 
0 

and ins tead of  (4) we obtain fo r  T (~, t) and ~ (~, T): 

(Co + c~T) (Tt - -  xlTO + S~l~ = Sz(i~T~ + ~.iT~ ), 

S~I~ = qv + c7 [ Tu + 3~ST~Tt~-  2rlT~ - -  ~hT~ + d (~,S)dT - -  T~ T,]. 

Equat ion (6) is hype rbo l i c  fo r  7 > 0 if Sv~is  r ep laced  by (7). 

We seek  the solut ions  of  (6) and (7) in the f o r m  

T(~, t)=~T,,(t)~% ~1(~, t)=2rh+,(t)~n+', ~E(O, ~b]. 
n ~ l  n = l  

(5) 

(6) 

(7) 

(8) 

Subst i tut ion of  these  s e r i e s  into the equat ions gives  
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n = l  k ~ l  

- -  ~ , lC2Ak+lEn--k]  ~n+l + [~ CiTI~Tnq-2--k - -  CIT]h+I X 

h=I 

n--k+l 

i = 1  

- -  13k (k + 1) Th+~C.+a_~- ~CoC~Ck~ 2En-k] ~ ~: + 

[ ~  c~ B~+3E~_kj~+3 - q- ( - -  1~) k (k if- 1) Th+lBn+4-h - -  X~ ~ 
k = l  

rt 

- - 1 5 [ Z k ( k +  l)TkD~+s-k]~+4}=O; 
h = i  

n = l  h = l  

rt 

k = l  

ci (k q- 1)qk+iA~+z--h + 3152Ah+lF,~+l-h - -  if- ?oc0 T ~ r  ~- 

- -  2Co?oH~+2 - -  (CoTi + %cl) ThG~+2-h + a~T~,K~+2-h] ~,~+2 + 

+ + + 

- -  2 (Coy i q- yoCi) ThH~+~_~ --  c~TiA~+~G,~+2_h + cr ,~,~+a q_ 

n 

k = l  

a o = XoC~?o, a~ = Co% (Xoc~ + 2~Co) + )~oCo (coTt + ?oCt), 

(z~ = 3 ;~C~CoYo + (Coy~ + yoC3 (~,oc~ + 2;~Co) + c~y~oCo, 

a~ = ;~c~ (co~'~ + 7oC3 + c~,~ (XoC~ + 2;~Co), a~ = -~- X~c~,~, 

[ ;%c~ ) 
~ = ~o, f~ = Co% ~ - 2 - -  + ;qCo + XoCo (CoW + ~'oC~), 

~ =  ( ~ - +  ~Co) (CoY~ + 7oC3 + ~oCoC~,~ + - - ~  Co,o, 

f3, = -~(Co7~+ 7oC~)+ c~,~( ~;%c~ + ~,~Co), f3~ = --~ c2?~, 

& = ;~oC~, 13 = GCoC, + ;~,c~, I~ = G c~ + ;~,C,Co, 15 = ;~' 2 
- - 7 -  

n 

k ~ l  h = i  

/2 n 

Bn+a = Z Ah+lAn-h+2, Dn+4 = Z ThBn+4-h' 
h = l  k = l  

n 

E,~-I = kTh (n + 1 -- k) Tn+i-k, F,~ = "~ k (n + 2 -- k) Th7~,z+2_h, 
k ~ l  h= 
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n t~ 

k = l  h = l  

K~+,=~T~+,E~_h.  
h = l  

Hence we find that the expansion coefficients in (8) must be calculated from the recurrence relations 

T~ ~ const ~ 0, ~rn+~ --  n (n + 1) 0~T.+~ + nTi~l~+~ + q)~+l (t) = O, 

O~ = )~ocoT~, (9) 

It is easy to see that the functions 4~n+i(t) and Xn+l(t) depend only on the expansion coefficients with numbers 

smaller than (n + 1). For example, 

q~2 = - -  ZiCo T4, X2 = q_~_2 T~, 
Co 

2 3 C~ --(I)a = 4~ocoTt T 2 - 8~tcoT I T2 ~ - T~h, 
Co 

co%3 = 2q2T~T~ + q3T~ - -  2coT2 (~ + 7o~) --  c,T~h + 

+ (Co7, + 7oC~) (T~T2 -- T~2) + 7~2 (22ctoT~T~ + 7r --  4Co7o~h). 

Eliminating ~n+l(t) f rom (9), we write the second order  l inear differential equation 

[ ] 7o Tn+1+ (2n+3) 7o01+n+l J~n+1--0t(n+l)ZTn+~+ 
r t  n 

+ 70 d)~+~ + n + I (I)~+~ + X~+~ = 0, 7o, 0j--  const, 
n ~t 

whose general solution has the form 
t 

Tn+1(t)=Pn+Iexp(en+it)+ Rn+lexp(~n+l t ) - - (~  fn+lexp(~en+lt)~n+l - -  s  dr) exp(en+lt)+ 

o 

t 

27(f"  [n+leXp(--~n+lt)~n+l - -  E n + l  dr) exp(~n+l/), 
o (10) 

- - n  ( - ~  ~)n+l + n + I q~n+l-]-Zn+l], 7o =~ O, 
[n+l (t) ~- 7o (n + 1) n 

1 

6n-}-l, n n + l - ~ { - - [ ( 2 n - l - 3 ) 7 o O i q S n + l ] z l z [ ( ( 2 n + 3 ) 7 ~  2+ 470 ( n +  1)301] T} n 
n -  n n 270 (n + 1)" 

The value of an+ t is positive; it is calculated by using the positive value of the square root. The value 
of Xn+ 1 is negative; it is calculated by using the negative value of the square root. For  this reason we take 

Pn+I = 0 ,  n ~ l ,  

the Rn+ 1 are a rb i t r a ry  integration constants .  

Consequently, at t ime zero we have the following temperature  distribution: 

T(~, 0)= Ti~+ ~ /~+1~ n+l, Tt4: 0, 

~ d~ . x(~, o)= s(L 0-----S' ~+o,  x - + - - ~ ,  r ~ 0 ;  
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the constants Rn+ I are chosen so that the function T(~, 0) will be differentiable a sufficient number of times. 

Example. 

T t > O ,  Rn+l : 0 ,  n > ~ l ;  c ~ : O ,  S : c o T ,  

(x, O) = exp (coTtx), T (x, O) : T~ exp (coT{x), x 6 ( - -  oo, xb (0)]. 

We assume that the boundary of the semiinfinite region is moving: xb(t ) = x [~b(t), t]. The choices of 

Tb(t) = T (x b, t) and xb(t) are interconnected; both these boundary functions depend on the form of the preas- 

signed function ~ = ~(t) and the choice of the arbitrary constants Rn+t, n >- i. 

Relations (5), (8), and (i0) give an exact formal solution of the problem. The question of the conver- 

gence of series (8) in the neighborhood of the characteristic ~ = 0 still remains open. 

Let us turn to the question of the boundary layer transition type of solution of the generalized heat-trans- 

fer equation. 

It was found recently that the term cyTtt in the generalized heat-transfer equation is helpful in a method- 

ological connection: Taking account of the finite rate of propagation of heat increases the stability of an in- 

verse heat-conduction boundary value problem [4, 5]. Here we consider the smoothing effect of the cY]Ttt term 
for one form of discontinuous initial data. 

Suppose we have the parabolic equation (i) and the hyperbolic equation 

cT~ + cyTt t  = (~,Tx)~. (ii) 

Both of these equations are second order in the argument x; we specify identical boundary conditions with res- 

pect to the coordinate x for both equations. We do not make the form of the boundary conditions specific, 

since it is not important for the following arguments. 

We assume that the relaxation period 7 is short, and discuss the situation relative to the presence of 

this small parameter for the old time derivative in Eq. (Ii). In this analysis we use the approach employed in 

[6] to study the relation between the Navier-Stokes and Euler equations for a gas whose viscosity approaches 

zero. 

The object of our discussion will be the initial conditions for Eqs. (I) and (11). Equation (ii) must have 
two conditions with respect to the argument t, and Eq. (i) one initial condition. For the parabolic Eq. (i) we 
specify discontinuous initial data: At t = 0 the temperature jumps from T0(x ) to Tl(x ) in the spatial region under 
consideration. For the hyperbolic Eq. (ii) we pose an initial two-point problem with one of the conditions at 
infinity: 

t = 0, T : To (x); t--~ 0% T--+ T~ (x). 

We now assume that the relaxation period is constant: 7 : Y0 -const. FollowingtheMises-Ladford method [6] 

we introduce a new argument s = t/70, and obtain instead of Eq. (II) 

c T ,  + cT,s  = 70 (~T~)x.  (12) 

We now replace the right-hand side of Eq. (12) by zero, and consider a solution of this equation for which T 

approaches finite values as s ~ 0 and s ~ 0% we assume that each limiting temperature depends on x as on a 

parameter. We denote this solution by 0(s, 7o), employing a single symbol for the whole family of variable 

states. We call 0 (s, Y0) a solution of Eq. (12) of the boundary layer transition type corresponding to the time 

t = 0 and the temperatures T O and Tt. This term reflects the structure of the solution and the method of ob- 
taining it. 

The integration of Eq. (12) with a zero right-hand side gives 

T = Tl + (To - -  Ti) exp ( - -  s), 

s - ~  O , T - + T o ;  s --+ + oo , T --+ T i , 

t _ in  To - -  T t  
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We study the transi t ion f rom T O to T1. Let 5 be any real  number such that 0 < 5 < 0.5; we take two in te rme-  
diate values of the tempera ture  T'  and T" such that 

To - -  T '  = 6 ( T o - -  T t )  = T" ~ T~, [T ' ,  T"] ~ [To, Td, 

then 

To - -  T" = (1 - -  6)(To - -  T~), T' - -  T" = (1 - -  26)(To - -  T~), 

Employing these relations we calculate the difference of the corresponding values of the arguments:  

~"--t '  = 7 0 I n ( + - -  1 ) �9 

We conclude f rom this resul t  that the t ime interval  during which the main part  of the change f rom To to T i 
occurs  approaches zero  as 7o ~ 0. We note that the right-hand side of the last  equation does not depend on the 
tempera ture  difference T o - T1. 

Let us assume that a cer ta in  hea t - t r ans fe r  problem has been solved with the hyperbolic Eq. (11) in the 
(x, t) plane for all small  70 ~ 0. We denote this family of solutions by T (x, t; 70). We make the substitution 
s = t/70 in these solutions and denote this same family by T(x, s ; 7o). We assume now that this same bound- 
ary  value problem is solved by the parabolic Eq. (1); the solution obtained T0(x, t) charac te r i zes  the t empe r -  
ature distr ibution everywhere  except at t = 0, where unbounded values of Tt may occur.  

On the basis of the M i s e s - L a d f o r d  construct ion it is natural  to assume that for  sufficiently small  T0 
the solution T of the generalized hea t - t r ans fe r  equation will be close to T o everywhere except in the neighbor-  
hood of t = 0, where the tempera ture  experiences a lump. During the jump, T(X, t; 70) has derivat ives  which 
increase  without bound as 7o ~ 0, but it seems plausible that the derivat ives 0 / 0 s  = 700/~t of the solution T (x, 
s; ~/0) are  bounded. Then the r ight-hand side of Eq. (12) is of the o rde r  Y0, so that Tturns  out to be close to 
the boundary layer  t ransi t ion type of solution 0 (s, 70) of Eq. (12) in this interval.  

Let us analyze these resul ts .  Let the t ime interval A(T0) approach zero more  slowly than 70, i . e . ,  
70/A(70) -~ 0. Then by choosing a sufficiently smal l  value of 70 it is possible to sa t isfy  the following r equ i re -  
ments with a preassigned accuracy:  

1) at t imes t > A(70) the solution T(x, t;70) is approximately equal to the solution T0(X, t); 

2) at t imes t < A(T0) the solution T (x, s; Y0) is approximately equal to 0 (s, 70) - t h e  solution of the 
boundary layer  t ransi t ion type corresponding to t = 0 and the t empera tures  T o and T1. 

There  has not been a r igorous mathematical  investigation of the general  case  of the t ransi t ion f rom the 
hyperbolic to the parabolic hea t - t r ans fe r  equation as 7 ~ 0. Certain questions of the degenerat ion of the 
hyperbolic equation with a small  pa rame te r  into the parabolic equation for rapidly oscil lat ing boundary condi-  

tions were studied in [7]. 

NOTATION 

T, temperature; x, Cartesian coordinate; t, time; c, volumetric heat capacity; ~, thermal conductivity 
of medium; 7, heat-transfer (heat flux) relaxation period; qv, internal heat source strength; ~, new argument; 

, auxiliary function. Subscripts: an independent variable as a subscript denotes partial differentiation; a dot 

over a quantity denotes ordinary differentiation. 

Ii 

2. 

3. 

4. 

5. 

6o 

7. 
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